On the copositive representation of binary and continuous nonconvex quadratic programs
نویسندگان
چکیده
منابع مشابه
On the copositive representation of binary and continuous nonconvex quadratic programs
In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the lin...
متن کاملA note on Burer's copositive representation of mixed-binary QPs
In an important paper, Burer [2] recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum of the lifted feasi...
متن کاملRepresenting quadratically constrained quadratic programs as generalized copositive programs
We show that any nonconvex quadratically constrained quadratic program (QCQP) can be represented as a generalized copositive program. In fact, we provide two representations. The first is based on the concept of completely positive (CP) matrices over second order cones, while the second is based on CP matrices over the positive semidefinte cone. Our analysis assumes that the feasible region of ...
متن کاملSimplified Copositive and Lagrangian Relaxations for Linearly Constrained Quadratic Optimization Problems in Continuous and Binary Variables
For a quadratic optimization problem (QOP) with linear equality constraints in continuous nonnegative variables and binary variables, we propose three relaxations in simplified forms with a parameter λ: Lagrangian, completely positive, and copositive relaxations. These relaxations are obtained by reducing the QOP to an equivalent QOP with a single quadratic equality constraint in nonnegative va...
متن کاملErratum to: On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets
In this paper, an erratum is provided to the article “On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets”, published in Optim. Letters, 2012. Due to precise observation of the first author, it has been found that the proof of Lemma 9 has a nontrivial gap, and consequently the main result (Theorem 10) is incorrect. In this erratum, we prove that C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2008
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-008-0223-z